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FUNDAMENTAL FACTS ON TRANSLATIONAL
O-REGULARLY VARYING FUNCTIONS

Milan R. Tasković∗

Abstract. In this paper we introduce three new classes of
functions under names translational slowly varying, translational
regularly varying and translationalO-regularly varying functions.
All classes have important applications in the study of asymptotic
processes. In this sense, Uniform Convergence Theorem, Charac-
terization Theorem and Representation Theorem are the main
results of this paper for all cite classes of functions. This results
are closely connected with the Karamata’s theory of regularly
varying functions. Also, in this paper we introduce three classes
of sequences under names translational slowly varying, transla-
tional regularly varying and translational O-regularly varying
sequences. All three classes have important applications in the
study of asymptotic processes. The results are of relevance in
connection with limit statements in various branches of probabil-
ity theory and ergodic theory.
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1. Introduction and history

We shall say that a positive, finite and measurable function R, defined
on Ia := [a,∞) for some a > 0, is a regularly varying function at infinity
(denoted this class by RV ) in the sense of Karamata if the limit

lim
x→∞

R(λx)
R(x)

= k(λ)(1)

is positive and finite for each λ > 0. It follows immediately that k(λ) = λρ

for some ρ ∈ R. The number ρ is the index of R.
The RV functions of index ρ = 0 are called slowly varying (denoted this

class by SV ) functions and are denoted by L. Their interest lies in the fact
that R is a RV function of index ρ if and only if R(x) = xρL(x) on some Ia.

Classes SV and RV of slowly and regularly varying functions were
introduced by Jovan Karamata in 1930. In this respect we refer to the books of
E. Seneta [26] and Bingham-Goldie-Teugels [7]. Both classes have important
consequences in the study of asymptotic processes.

In connection with the preceding, the most important properties of RV
functions may be stated as follows:

(a) (Characterization Theorem). If R is a regularly varying function,
then the limit k(λ) in (1) is necessarily of the form λρ for some −∞ < ρ <∞
and for each λ > 0.

(b) (Uniform Convergence Theorem). The relation (1) holds uniformly
for λ in any compact interval I ⊂ (0,∞).

(c) (Representation Theorem). There exists a number b ≥ a such that
for x ≥ b we have

R(x) = exp
(
α(x) +

∫ x

b

β(t)
t
dt

)
,

where α and β are bounded measurable functions on Ib such that α(x) con-
verges to a real number and β(x)→ ρ as x→∞.

We notice that RV functions have been introduced by J. Karamata [17].
He proved for continuous function R the crucial of the here mentioned results.

The Uniform Convergence Theorem for measurable SV functions was
proved by T. van Aardennee-Ehrenfest, N.G. de Bruijn and J. Korevaar [31],
H. Delange [13], W. Matuszewska [22], and Bojanić-Seneta [8].

The Representation Theorem for SV funictions L such that logL is
integrable on every compact subinterval of (a,∞) was proved in [31]. Finally,
the Representation Theorem in the present form, for arbitrary measurable SV
functions, was established by N. G. de Bruijn [11]; also and Bojanić-Seneta [8].
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To extend Karamata’s ideas to O-asymptotic relations in 1936 V. G.
Avakumović introduced the class of O-regularly varying functions K (denoted
this class by ORV ) which satisfy the condition

0 < lim inf
x→∞

K(λx)
K(x)

≤ lim sup
x→∞

K(λx)
K(x)

<∞

for every λ ≥ 1. In this form ORV functions were introduced by V.G. Avaku-
mović [3] in a note concerning some tauberian theorems, but it was J. Kara-
mata [19] who in 1936 revealed their characteristic properties.

It happened that Bari-Stečkin [5] in their well-known memoir on best
approximation, which appeared in 1956, indepedently introduced monotone
ORV functions which tend to zero and developed their theory.

J. Karamata in 1936 proved that a ORV function K can be character-
ized by each of the following conditions:

(a) (Representation Theorem). There exist measurable and bounded
real functions α and β on Ib for some b ≥ a such that for x ≥ b

K(x) = exp
(
α(x) +

∫ x

b
β(t)

dt

t

)
.

(b) (Characterization Theorem). There exist four numbers 0 < m <
M <∞ and ρ < τ such that for y ≥ x ≥ b the following inequalities hold:

m
(y
x

)ρ
≤ K(y)
K(x)

≤M
(y
x

)τ
.

In this paper, we shall introduce some new classes of functions which
have further applications in the study of asymptotic processes and ergodic
theory. This facts are closely connected with the Karamata’s theory of regu-
larly varying functions.

2. Translational slowly varying functions

A positive, finite and measurable function A, defined on Ia for some
a > 0, is said to be translational slowly varying at infinity (denoted this class
by Tr(SV )) if the limit

lim
x→∞

A(x+ λ)
A(x)

= 1(2)

for each λ ≥ 0. The most important properties of Tr(SV ) functions may be
stated as follows:

Theorem 2.1. (Uniform Convergence Theorem). If A is a Tr(SV )
function, then for every [a, b], 0 < a < b < ∞, the relation (2) holds uni-
formly with respect to λ ∈ [a, b].
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Proof. Let A be a Tr(SV ) function and let f be defined by

f(x) =
{

0 if x < a,
logA(x) if x ≥ a.

Then, as is easy to see, f is a measurable function on R and

f(x+ λ)− f(x)→ 0 (x→∞)(3)

for every λ ∈ R. If we show that the following fact holds that

sup
0≤λ≤1

|f(x+ λ)− f(x)| → 0 (x→∞)(4)

the statement will clearly be proved. Suppose that (3) holds and that (4) is
not true. Then we can find δ > 0 and sequences (λn) and (xn) such that
λn ∈ [0, 1], xn ≥ n, and∣∣f(xn + λn)− f(xn)

∣∣ ≥ δ for n ∈ N.

Let m∗ be the outer measure of subsets of R and for 0 < ε < δ/4 let

Mn :=
{
t : sup

x≥n
|f(x+ t)− f(x)| ≤ ε

}
.

Since (Mn ∩ [0, 3]) is an increasing sequence of subsets of R converging
to [0, 3] we obtain

lim
n→∞

m∗(Mn ∩ [0, 3]) = 3,

and hence we can find s ∈ N such that m∗(Ms ∩ [0, 3]) ≥ 5/2. Let

B =
{
t : |f(t)− f(xs)| ≤ ε

}
∩ [xs, xs + 4]

C =
{
t : |f(t)− f(xs + λs)| ≤ ε

}
∩ [xs, xs + 4],

then B and C are disjoint measurable subsets of [xs, xs +4] and thus we have
m(B) +m(C) ≤ 4.

If we denote by X and Y the set Ms ∩ [0, 3] translated by xs and
xs + λs, respectively, then it is easy to see that X ⊂ B and Y ⊂ C. Hence,
consequently,

5
2
≤ m∗

(
Ms ∩ [0, 3]

)
= m∗(X) ≤ m∗(B),

5
2
≤ m∗

(
Ms ∩ [0, 3]

)
= m∗(Y ) ≤ m∗(C),

and thus so m(B) +m(C) ≥ 5, which is impossible in view of the preceding
inequality m(B) +m(C) ≤ 4.

For the case of an arbitrary interval [a, b] define f̃(x) = f((b − a)x).
Then

f(x+ λ)− f(x) = f̃(y + µ)− f̃(y) + f(x− a)− f(x)
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where y = (x− a)/(b − a), µ = (λ− a)/(b − a), so that y →∞ if and only if
x→∞; i.e., λ ∈ [a, b] if and only if µ ∈ [0, 1]. The proof is complete.

Annotation. The preceding proof follows the same ideas as the anal-
ogous proof of Lemma 1 in Bojanić - Seneta [8].

The following statement gives an integral representation theorem for
functions from the class Tr(SV ).

Theorem 2.2. (Representation Theorem). If A is a Tr(SV ) function,
then there exists a positive number b ≥ a such that for all x ≥ b we have

A(x) = µ(x) exp
(∫ x

b
ε(t)dt

)
,(5)

where µ(x) is a positive and measurable function on Ib such that µ(x)→ c ∈
(0,∞) as x→∞, and ε(x) is a continuous function on Ib such that ε(x)→ 0
(as x→∞). Conversely, if a function A of the form (5), then A is a Tr(SV )
function.

Proof. Let A be a Tr(SV ) function and let f be defined by f(t) =
logA(t). Then, as is easy to see, f is a measurable function for t ≥ b, where
Ib is the domain of A, and f satisfies the following condition that

f(t+ λ)− f(t)→ 0 (t→∞)

uniformly with respect to λ ∈ [0, 1]. Define the function f1(t) by

f1(t) = f(n) + 6
[
f(n+ 1)− f(n)

] ∫ t−n

0
y(1− y)dy

for n ≤ t ≤ n+ 1, and all n ∈ N ∪ {0}. Since

f ′1(t) = 6
[
f(n+ 1)− f(n)

]
(t− n)(n+ 1− t)

for n ≤ t ≤ n+ 1, it follows that, for all n ∈ N ∪ {0}, f ′1(n) = 0. Hence, f ′1(t)
is continuous and ∣∣f ′1(t)∣∣ ≤ 3

2

∣∣f(n+ 1)− f(n)
∣∣

for n ≤ t ≤ n+ 1. Also we obtain that∣∣f1(t)− f(t)
∣∣ ≤ ∣∣f(n)− f(t)

∣∣+ 6
∣∣f(n+ 1)− f(n)

∣∣∣∣∣ ∫ t−n

0
y(1− y)dy

∣∣∣ =

=
∣∣f(n)− f(t)

∣∣+ ∣∣f(n+ 1)− f(n)
∣∣(t− n)2(2n + 3− 2t) ≤

≤
∣∣f(t)− f(n)

∣∣+ 3
∣∣f(n+ 1)− f(n)

∣∣,
and thus, as t→∞, we have

f ′1(t)→ 0 and f1(t)− f(t)→ 0.
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Hence, since the function x �→ f1(x) it has continuous derivative for
x ≥ b, we obtain

f1(x) =
∫ x

b
ϕ(t)dt + constant,(6)

where x �→ ϕ(x) is a contunuous function for x ≥ b. If to differentiate (6) we
have

f ′1(x) = ϕ(x) for x ≥ b,

i.e., from the preceding facts, we obtain
ϕ(x) = ε(x) for x ≥ b,(7)

with the function x �→ ε(x) which is a continuous function on Ib such that
ε(x) → 0 as x→∞. From (6) and (7) we obtain

A1(x) = exp(f1(x)) = C exp
(∫ x

b
ε(t)dt

)
,

where C is a constant. Also, from the preceding facts, we have

µ(x) =
A1(x)
A(x)

=
C exp

(
f1(x)

)
exp

(
f(x)

) =

= C exp
(
f1(x)− f(x)

)
→ C (x→∞).

Hence

A(x) = µ(x) exp
(∫ x

b
ε(t)dt

)
,

where µ(x) and ε(t) are as required the Representation Theorem.
Conversely, according to these conditions, every the function A(x), with

the representation (5), is a measurable function on Ib and for every λ ≥ 0 holds∣∣∣∣A(x+ λ)
A(x)

− 1
∣∣∣∣ =

∣∣∣∣exp
(∫ x+λ

x
ε(t)dt

)
− 1

∣∣∣∣ ≤
≤ exp

(
λmax

t≥x
ε(t)

)
− 1→ 0 (x→∞);

(8)

and with this the proof is complete.
Remark. We notice that from the preceding proof of part (8) we have

a directly and a simple proof, in the proper manner, of the Theorem 1.
An illustration. We notice that a typical result of the Abelian nature

can be stated as follows. Let k be a measurable function such that∫ 1

0
t−δ|k(t)|dt <∞ and

∫ ∞
1

eδt|k(t)|dt <∞

for some 0 < δ < ∞, then for every translational slowly varying function A
we have

lim
x→∞

∫ ∞
0

k(t)
A(x+ t)
A(x)

dt =
∫ ∞

0
k(t)dt.



Fundamental facts on translational O-regularly varying functions 113

3. Translational regularly varying functions

A positive, finite and measurable function f , defined on Ia for some
a > 0, is said to be translational regularly varying at infinity (denoted this
class by Tr(RV )) if the limit

lim
x→∞

f(x+ λ)
f(x)

= h(λ)(9)

is positive and finite for each λ ≥ 0.
A function f is said to be translational regularly varying at zero if f(1/x)

is translational regularly varying at infinity.
Translational regular variation can now be defined at any finite point a

by shifting the origin of the function to this point.
It is thus apparent that it suffices to develop the theory of translation

regularly variation at infinity, which we shall do, frequently omitting the words
”at infinity” in the sequel.

The fundamental statement of this section is the following, since it
shows that h(λ) must have the form eσλ, and so the f considered must be
translational regularly varying in the previously defined sense.

Theorem 3.3. (Characterization Theorem). If f is a translational reg-
ularly varying function (i.e., f ∈ Tr(RV )), then the limit h(λ) in (9) is nec-
essarily of the form eσλ for some −∞ < σ <∞ and for each λ ≥ 0.

The number σ is the index of f . The Tr(RV ) functions of index σ = 0
are called translational slowly varying (Tr(SV )) functions and are denoted
by A. Their interest lies in the fact that f is a Tr(RV ) function of index σ if
and only if f(x) = eσxA(x) on some Ib.

We shall proceed by proving Theorem 3 via a well-know variant state-
ment of Cauchy in the following form.

Theorem 3.4. Let r(y) be a real measurable function defined on Ib for
some b > 0. If

r(y + µ)− r(y)→ ρ(µ) as y →∞,

with finite ρ(µ) and for each µ ∈ R, then

r(y)
y
→ ρ(µ)

µ
= σ as y →∞

for each µ �= 0. Consequently, then ρ(µ) = σµ for µ ∈ R. (See: A. Zygmund
[34].)



114 Milan R. Tasković

A brief variant proof of this statement based on Césaro limit of a se-
quence may be found in E. Seneta [26].

As an immediate application of Theorem 4, as a directly consequence,
putting r(y) = log f(y), λ = µ and ρ(µ) = log h(µ), we obtain the following
essential result.

Theorem 3.5. If f ∈ Tr(RV ), then there exists a real number σ such
that for every λ ≥ 0 we have that

f(x+ λ)
f(x)

→ eσλ as x→∞

and such that
log f(x)

x
→ σ as x→∞.

In connection with preceding facts, in further, from Theorem 5 we have
that every translational regularly varying function f has the representation
in the form

f(x) = eσxA(x) for x ≥ b,

where b ≥ a, where σ ∈ R and A(x) is a translational slowly varying function.
In connection with this, from the preceding section and this facts, we

have the following fundamental statement.

Theorem 3.6. (Representation Theorem). A function f ∈ Tr(RV ) if
and only if there exist σ ∈ R and a positive number b ≥ a such that for all
x ≥ b we have

f(x) = µ(x) exp
(
σx+

∫ x

b
ε(t)dt

)
,

where µ(x) is a positive and measurable function on Ib such that µ(x)→ c ∈
(0,∞) as x→∞, and ε(x) is a continuous function on Ib such that ε(x)→ 0
(as x→∞).

Now, from Theorem 6, as an immediate consequence, we obtain the
following statement on uniformity of convergence in the following sense.

The following statement, the analogue of Theorem 1, ensures, under
measurability of f , uniformity of convergence of finite intervals in (9).

Theorem 3.7. (Uniform Convergence Theorem). If f is a Tr(RV )
function, then the relation (9) holds uniformly for λ in any compact inter-
val I ⊂ (0,∞).
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The proof of this statement is analogous to the proof of Theorem 1.
Annotations. In connection with the Characterization Theorem we

notice that from
f(x+ λ+ γ)

f(x)
=
f(x+ λ+ γ)
f(x+ λ)

f(x+ λ)
f(x)

(Eq)

there follows, as x→∞,

h(λ+ γ) = h(γ)h(λ)

for all nonnegative λ and γ.
This is a form of the Cauchy (or Hamel) functional equation on the

nonnegative real numbers, for a function h > 0, which, being a pointwise
limit of measurable functions, is measurable.

It is known (see: J. Aczél [1]) that under these conditions the only
solutions are of the form eσλ for −∞ < σ <∞.

Based on the above facts the proof of the preceding statement , as
and Theorem 3, we can give also serve as an illustration of the use of Lusin’s
Theorem in the present setting, which with Egorov’s Theorem and Steinhaus’s
Theorem, appear to be in the natural tools for the present theory.

Examples. The function A(x) = log(x + 3) for x ≥ 0 belongs to the
class Tr(SV ); also, the function

A(x) =
1
x

∫ x

1

dt

1 + log t
for x ≥ 1

belongs to the class of Tr(SV ). On the other hand, the function f(x) = ex

for x ∈ R belongs to the class Tr(RV ), but limx→∞
(
f(λx)/f(x)

)
does not

exist, for example, for λ = 3. Hence f /∈ RV .
Annotations. We notice, if f is a Tr(RV ) function of index σ, then,

from the preceding facts and results, the following statements hold:

(a) lim
x→∞

log f(x)
x

= σ.

(b) The function log f(x) is locally bounded on Ib for some b ≥ a.
(c) limx→∞ e−τxf(x) =∞ for τ < σ.
(d) limx→∞ e−τxf(x) = 0 for τ > σ.
(e) For each pair of real numbers τ and ρ with the property τ < σ < ρ,

the following facts hold1):

inf
t≥x

{
e−τtf(t)

}
∼ e−τxf(x) as x→∞,

sup
t≥x

{
e−ρtf(t)

}
∼ e−ρxf(x) as x→∞.

1)g(x) ∼ α(x) means g(x)/α(x) → 1 as x→ ∞.
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(f) For each pair of real numbers τ and ρ with the property τ < σ < ρ,
the following facts hold:

sup
b≤t≤x

{
e−τtf(t)

}
∼ e−τxf(x) as x→∞,

inf
b≤t≤x

{
e−ρtf(t)

}
∼ e−ρxf(x) as x→∞.

(g) For each τ < σ the following fact holds that is

lim
x→∞

1
e−τxf(x)

∫ x

b
e−τtf(t)dt =

1
σ − τ .

(h) For each τ > σ the following fact holds that is

lim
x→∞

1
e−τxf(x)

∫ ∞
x

e−τtf(t)dt =
1

τ − σ .

4. Translational O-regularly varying functions

A positive, finite and measurable function f , defined on Ia for some
a > 0, is said to be translational O-regularly varying at infinity (denoted this
class by Tr(ORV )) if the limit

lim sup
x→∞

f(x+ λ)
f(x)

= r(λ)(10)

is finite for each λ ≥ 0.2)

We notice, from (Eq), there follows, as x→∞, that

r(λ+ γ) ≤ r(λ)r(γ)

for all nonnegative λ and γ. Consequently, to this functional inequality, we
have that f is a Tr(ORV ) function at infinity if and only if

f(x+ λ) � f(x) (x→∞) for each λ ≥ 0.3)

2)Or, equivalently: if

lim inf
x→∞

f(x+ λ)

f(x)
> 0 and lim sup

x→∞

f(x+ λ)

f(x)
<∞

for each λ ≥ 0. (We notice that if lim sup
λ→0

r(λ) = 1, then λ �→ r(λ) is a continuous function.)

3)g(x) � d(x) (x → ∞) means that there exist two numbers 0 < m < M < ∞ such that
the following inequalities hold

m ≤ g(x)

d(x)
≤M for x large enough;

if we wish to precise that the preceding inequalities hold for x ≥ a, we write g(x) � d(x) on
the interval Ia.
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Theorem 4.8. If f is a Tr(ORV ) function and I any compact interval
in (0,∞), then

lim sup
x→∞

f(x+ λ)
f(x)

<∞

holds uniformly for λ in I, i.e.,

lim sup
x→∞

(
sup
λ∈I

f(x+ λ)
f(x)

)
<∞.

Corollary 4.9. If I is any compact interval in (0,∞), then the follow-
ing fact holds:

lim inf
x→∞

f(x+ λ)
f(x)

> 0 uniformly for λ in I.

Corollary 4.10. The function log r defined by (10) is bounded on any
compact interval in (0,∞).

Corollary 4.11. There exists a number b ≥ a such that the function
log f is locally bounded on Ib.

Indeed, let m, M and b be positive real numbers such that the following
inequalities hold:

mf(x) ≤ f(x+ λ) ≤Mf(x) for each λ ∈ [1, 1 + e]

and for each x ≥ b. Then, any s ∈ [ben, ben+1], for n ∈ N∪ {0}, is of the form
s = ben + λ with λ ∈ [1, 1 + e], so that

mf(ben) ≤ f(ben + λ) = f(s) ≤Mf(ben).

Remark. The proof of Theorem 8 follows the same ideas as the proof
of Theorem 2.12 in E. Seneta [26] and as the proof of Theorem 1 in Aljančić
- Arand-elović [4]. See: Tasković [30].

The following statement, from Theorem 8, gives an integral representa-
tion theorem for functions from the class Tr(ORV ).

Theorem 4.12. (Representation Theorem). A function f ∈ Tr(ORV )
if and only if there exist σ ∈ R and measurable and bounded real functions µ
and η on Ib for some b ≥ a such that, for x ≥ b,

f(x) = exp
(
σx+ µ(x) +

∫ x

b
η(t)dt

)
.(11)

We notice that as to conclude, and for the sake of completeness, we
give here a proof of the preceding statement, via Theorem 8, which may be
of some interest.
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Proof of Theorem 9. Fix a b ≥ a such that (by Corollary 3 of Theorem
8) the function log f is locally bounded (and so locally integrable) on Ib. For
s > 0 and x ≥ b one has∫ s

0
log

f(t+ b)
f(t+ x)

dt+
∫ x

b
log

f(t+ s)
f(t)

dt =

=
{∫ b+s

b
+
∫ x

x+s
+
∫ s+x

s+b
+
∫ b

x

}
log f(u) du = 0.

On the other hand ∫ s

0
log f(x)dt = s log f(x),

so that, by addition, we obtain∫ s

0
log
(
f(x)

f(t+ b)
f(t+ x)

)
dt +

∫ x

b
log

f(t+ s)
f(t)

dt = s log f(x).

Consequently, the function f can be represented in the form (11), where
we have, for τ ∈ R, that is

σ =
τ

s
, η(x) = ηs(x) =

1
s

(
log

f(x+ s)
f(x)

− τ
)

and

µ(x) = µs(x) =
1
s

{∫ s

0
log f(t+ b)dt −

∫ s

0
log

f(t+ x)
f(x)

dt

}
− bτ

s
.

In this sense, the functions µ and η are bounded on Ib, because first,
the function log(f(x + t)/f(x)) is bounded for 0 ≤ t ≤ s and b ≤ x ≤ c (for
each c ≥ b) and second, by Theorem 8, there exists a number c ≥ b such that
this function is bounded for 0 ≤ t ≤ s and x ≥ c, too. Hence we have that
(10) implies (11).

Conversely, if f is of the form (11) and µ and η are bounded, i.e. |µ(x)| ≤
M and |η(x)| ≤ N for x ≥ b, one has for λ ≥ 0, x ≥ b and x+ λ ≥ b we have

f(x+ λ)
f(x)

= exp
(
σλ+ µ(x+ λ)− µ(x) +

∫ x+λ

x
η(t)dt

)
≤

≤ exp(σλ+ 2M + λN);

and thus we have that (11) implies (10). The proof is complete.

Theorem 4.13. (Characterization Theorem). A function f ∈ Tr(ORV )
if and only if at least one of the following conditions hold:

(Ta) There exist four numbers 0 < m < M < ∞ and ρ < τ such that
for all y ≥ x ≥ b the following inequalities hold:

m exp
(
ρ(y − x)

)
≤ f(y)
f(x)

≤M exp
(
τ(y − x)

)
.4)
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(Tb) There exists a real number ρ such that, as x → ∞, the following
fact holds: ∫ x

b
e−ρtf(t)dt � e−ρxf(x) on Ic for each c > b.

(Tc) There exists a real number τ such that, as x → ∞, the following
fact holds: ∫ ∞

x
e−τtf(t)dt � e−τxf(x) on Ib.

In connection with this statement, we notice, moreover, if f ∈ Tr(ORV )
then, from Theorem 9, we obtain that there exist four numbers m, M , ρ and
τ such that m = e−2C , M = e2C , ρ = −N + σ and τ = N + σ, and where
|µ(x)| ≤ C and |η(x)| ≤ N for x ≥ b.

Conversely, if (Ta) holds, then directly for y = x+ λ ≥ x as x→∞ we
obtain that f is a Tr(ORV ) function.

This means that f ∈ Tr(ORV ) if and only if (Ta). Thus, we need only
show that (Ta) is a equivalent to the (Tb) and that (Tb) is a equivalent to
the (Tc).

An illustration for the preceding facts is the following case. If δ(t) is an
arbitrary bounded measurable function on the interval [b,+∞), then for the
function f(x) = exp

(∫ x
b δ(t)dt

)
we have the following inequalities

exp(λρ) ≤ f(x+ λ)
f(x)

≤ exp(λτ)

for all x ≥ b and λ ≥ 0, whenever ρ ≤ δ(t) ≤ τ for every t ≥ b. Hence we have
f ∈ Tr(ORV ).

Second illustration, if δ(t) is an arbitrary bounded measurable function
on the Ib for b ≥ a > 0 and σ ∈ R, then for the function of the following form
f(x) = exp(σx+

∫ x
b δ(t)dt) we have the following inequalities

exp
(
(σ + ρ)λ

)
≤ f(x+ λ)

f(x)
≤ exp

(
(σ + τ)λ

)
for all x ≥ b and λ ≥ 0, whenever ρ ≤ δ(t) ≤ τ for every t ≥ b. Hence we
obtain f ∈ Tr(ORV ).

4)On the other hand, in fact, we notice that instead the fact (Ta) we can supposed that
the following fact holds that for a given λ ∈ (0,∞) there exist m = m(λ) and M = M(λ)
such that

0 < m(λ) ≤ f(x+ t)

f(x)
≤M(λ) <∞

for each t ∈ [0, λ]. Also, we can supposes a priory that m and M are independent of λ.
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Theorem 4.14. Let f be a Tr(ORV ) function and let r be the positive
and finite function on (0,∞) defined by (10). Then there exist the following
limits

p = p(f) = lim
t→0+

log r(t)
t

and q = q(f) = lim
t→∞

log r(t)
t

;(12)

also, then
1) −∞ < p ≤ q <∞.

2) r(t)
{
≥ eqt for each t > 0,
≤ ept for each 0 < t < 1.

3) r(t) = ept = eqt for each 0 < t < 1.

Annotation. In connection with this statement, the numbers p and q
are the lower index and the upper index of the Tr(ORV ) function f . If p = q,
we say that f is of index p. A special interest are Tr(ORV ) functions of
index p = 0; and we call them slow Tr(ORV ) functions. For a given Tr(ORV )
function f define:

ρ = ρ(f) = sup
η

lim inf
x→∞

η(x),(ηs)

and

ρ = ρ(f) = inf
η

lim sup
x→∞

η(x),(ηi)

where the sup and inf are taken over all measurable and bounded functions η
on Ib for which there exists a measurable and bounded function µ on Ib such
that (11) holds. In this sense:

ρ
1

= ρ
1
(f) = sup

{
σ ∈ R : e−σxf(x) almost increases5)on Ib

}
,(13)

ρ1 = ρ1(f) = inf
{
τ ∈ R : e−τxf(x) almost decreases on Ib

}
,(14)

ρ
2

= ρ
2
(f) = sup

{
σ ∈ R :

∫ x

b
e−σtf(t)dt �(15)

� e−σxf(x) on Ic for each c > b
}
,

ρ2 = ρ2(f) = inf
{
τ ∈ R :

∫ ∞
x

e−τtf(t)dt � e−τxf(x) on Ib

}
.(16)

5)A function f positive and finite on Ib is said to be almost increasing on Ic (c ≥ b) for
x ≥ c if there exists a constant M ≥ 1 such that

f(x) ≤Mf(y) for each y ≥ x ≥ c,

or equivalently, if

f(x) ≤M inf
t≥x

f(t) for each x ≥ c.
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Suppose, in the sequel, that f is a Tr(ORV ) function of lower and upper
index p and q, respectively.

Annotation. We notice, in connection with the preceding facts, that
if f is a measurable and almost increasing function on Ic, then:

Fα(x) :=
∫ x

c
e−αtf(t)dt � e−αxf(x) on Ic for each α < 0,(17)

F ∗α(x) :=
∫ ∞

x
e−αtf(t)dt � e−αxf(x) on Ic for each α > 0,(18)

for which F ∗α(c) is finite. Indeed, from f(t) ≤ Mf(x) for c ≤ t ≤ x, there
follows

Fα(x) ≤Mf(x)
∫ x

c
e−αtdt ≤Mf(x)

∫ x

0
e−αtdt ≤ −M

α
e−αxf(x),

and similarly, Mf(t) ≥ f(x) for t ≥ x ≥ c implies that

MF ∗α(x) ≥ f(x)
∫ ∞

x
e−αtdt =

1
α
e−αxf(x).

On the other hand, if f is a measurable and almost decreasing function

A function f(x) is said to be almost increasing when x → ∞ (i.e., for x large enough) if
it is almost increasing on some interval Ic, or, equivalently, if

f(x) � inf
t≥x

f(t) as x→ ∞.

In this sense, we note that the last relation has the same meaning as

f(x) � inf
t≥x

f(t) as x→ ∞.

Also, by duality (with respect to the ordered set of positive real numbers in which f takes
his values), a function f is said to be almost decreasing on Ic for x ≥ c if there is a constant
0 < m ≤ 1 such that

f(x) ≥ mf(y) for each y ≥ x ≥ c,

or, equivalently,

f(x) ≥ m sup
t≥x

f(t) for each x ≥ c;

similarly, a function f(x) is said to be almost decreasing when x→ ∞ if

f(x) � sup
t≥x

f(t) (x→ ∞),

or, equivalently, if

f(x) � sup
t≥x

f(t) (x→ ∞).
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on Ic, then:

F ∗α(x) � e−αxf(x) on Ic for each α > 0,(19)
Fα(x) � e−αxf(x) on Ic′ for each α < 0 and each c′ > c.(20)

The proof for this is very similar with the preceding proof of (17) and
(18). Indeed, from mf(t) ≤ f(x) for t ≥ x ≥ c there follows:

mF ∗α(x) = m

∫ ∞
x

e−αtf(t)dt ≤ f(x)
∫ ∞

x
e−αtdt =

1
α
e−αxf(x)

for x ≥ c; and f(t) ≥ mf(x) for x ≥ t ≥ c implies

Fα(x) =
∫ x

c
e−αtf(t)dt ≥ mf(x)

∫ x

c
e−αtdt ≥ m

−α
(
1− e−αc

)
e−αxf(x).

In further, we notice that, the proof of Theorem 11 is based on the
following statement and its consequences.

Lemma 1. Let the function ρ be positive, finite and locally bounded
from above on (0,∞) and such that ρ(s+ t) ≤ ρ(s)ρ(t) for each s and t. Then

lim
t→∞

log ρ(t)
t

= inf
t>0

log ρ(t)
t

.(21)

Proof. For proof of the fact (21) it is enough to prove that the following
inequality holds

lim sup
t→∞

log ρ(t)
t

≤ log ρ(t)
t

for each t > 0;

in this sense, fix a t > 0 and let s = t. Then for n ∈ N we have first

ρ(nt) ≤ (ρ(t))n for t > 0,

and, dividing by nt > 0, we obtain

log ρ(nt)
nt

≤
log
(
ρ(t)

)n
nt

=
log ρ(t)

t
;

hence, for x ≥ kt (k = 1, 2, . . . ), there exists some integer m ≥ k such that
mt ≤ x < (m+ 1)t. By the preceding inequality

sup
x≥kt

log ρ(x)
x

= sup
n≥k

sup
nt≤u<(n+1)t

log ρ(u)
u

≤ sup
n≥k

log ρ(t)
t

=
log ρ(t)

t

and the required statement follows by letting k →∞. The proof is compleete.

Corollary 4.15. Let the function ρ be positive, finite and locally bounded
from above on (0, 1] and such that ρ(s+t) ≤ ρ(s)ρ(t) for each s and t in (0, 1].
Then

lim
t→0+

log ρ(t)
t

= sup
0<t<1

log ρ(t)
t

.(22)
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We notice that for the proof of this statement one has only to apply
Lemma 1 to the function ρ(1/t) for t > 0.

Corollary 4.16. Let the function ρ be positive, finite and locally bounded
from above on (0,∞) and such that ρ(s+ t) ≤ ρ(s)ρ(t) for all s, t ≥ 0. Denote
by q and p the limits in (21) and (22), respectively, then

−∞ < p ≤ q <∞.
Proof. Facts q < ∞ and p > −∞ follow from (21) and (22), respec-

tively. From ρ(s+ t) ≤ ρ(s)ρ(t) it follows that
(
ρ(1/t)

)1/t ≤
(
ρ(t)

)t for t large
enough, i.e., we obtain

log ρ(1/t)
1/t

≤ log ρ(t)
t

;

and hence the statement p ≤ q directly follows by leetting t→∞. The proof
is complete.

Corollary 4.17. Let the function ρ be positive, finite and locally bounded
from above on (0,+∞) and such that ρ(s+ t) ≤ ρ(s)ρ(t) for all s, t ≥ 0, then

ρ(t)
{
≥ eqt for each t ≥ 0
≤ ept for each 0 < t < 1,

(23)

where q and p denoted the limits in (21) and (22), respectively.

Proof of Theorem 11. The proof of this statement is now immediate,
since the function r of Theorem 11 satisfies all hypotheses required for the
function ρ in Lemma 1 and its Corollaries (definition (10) and its immediate
consequence and Corollary 2 of Theorem 8).

Lemma 2. Let f be of the form (11). Then the function e−λxf(x) al-
most increases on Ib for λ < σ + lim infx→∞ η(x) and almost decreases on Ib
for λ > σ + lim supx→∞ η(x).

We notice, using the numbers defined and denoted by ρ, ρ, (13) and
(14), the result of Lemma 2 may be stated as follows:

ρ(f) ≤ ρ
1
(f) and ρ(f) ≥ ρ1(f).(24)

Proof of Lemma 2. From (11) follows

e−αyf(y)
e−αxf(x)

= exp
(
µ(y)− µ(x) +

∫ y

x
(η(t) + σ − α)dt

)
(25)

for y ≥ x ≥ b and for any real number α.
The function expµ(x) being bounded away from both 0 and ∞, and so

almost increasing and almost decreasing on Ib, we can assume that µ = 0. For
the same reason the function f is almost increasing and almost decreasing on
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every finite interval [b, c] for c ≥ b. Hence, it is sufficient to prove that Lemma
1 holds on some interval Ic (c ≥ b). Choose c ≥ b such that η(t) ≥ σ − λ
(≤ σ − λ) for t ≥ c. From (25) with α = λ then follows

e−λyf(y)
e−λxf(x)

= exp
(∫ y

x

(
η(t) + σ − λ

)
dt

)
≥ e0 = 1 (≤ e0 = 1)

for y ≥ x ≥ c. The proof is complete.

Lemma 3. Let f be a positive and measurable function on Ib. Suppose
that there exist two numbers σ0 and τ0 such that e−σ0xf(x) almost increases
and that e−τ0xf(x) almost decreases on Ib. Then∫ x

b
e−ρtf(t)dt � e−ρxf(x) on Ic(26)

for each c > b and each ρ < σ0, and∫ ∞
x

e−τtf(t)dt � e−τxf(x) on Ib(27)

for each τ > τ0.

Proof. The statement follows immediately from the properties (17),
(18), (19) and (20) of almost monotone functions: one obtains (26) by putting
f(t) with e−σ0f(t) and α = ρ−σ0 in (17) and (20); and, similarly, (27) follows
by putting f(t) with e−τ0tf(t) and α = τ − τ0 in (18) and (19). The proof is
complete.

We notice, using the numbers defined by (13), (14), (15) and (16), the
result of Lemma 3 can be stated as follows:

ρ
1
(f) ≤ ρ

2
(f) and ρ2(f) ≤ ρ1(f).(28)

The previous reasoning and Lemma 3 show that the sets in (15) and
(16) are intervals.

Lemma 4. Let f be a positive, measurable and locally bounded function
on Ib. Suppose that for a real number ρ the fact (26) holds for some c > b.
Then f can be written in the form (11), where µ and η are measurable bounded
functions on Ib and

lim inf
x→∞

η(x) > ρ− σ.

Proof. For b ≤ x < c we can take µ(x) = log f(x) and η(x) = 0. Hence,
it is enough to determine µ and η for x ≥ c. Let m and M be real numbers
such that 0 < m ≤ 1 ≤M and

m ≤ B(x) =
e−ρxf(x)∫ x

b e
−ρtf(t)dt

≤M for x ≥ c.
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On the other hand, since∫ y

c
B(x)dx =

[
log
∫ x

b
e−ρtf(t)dt

]y

c

for y ≥ c, and so for x ≥ c

f(x) = eρxB(x)
∫ x

b
e−ρtf(t)dt =

=
{
eρcB(x)

∫ c

b
e−ρtf(t)dt

}{
eρ(x−c) exp

(∫ x

c
B(t)dt

)}
;

hence statement follows if we put

µ(x) = log
{
e(ρ−σ)cB(x)

∫ c

b
e−ρtf(t)dt

}
and η(x) = B(x) + ρ− σ.

Lemma 5. Let f be a positive, measurable and locally bounded function
on Ib. Suppose that for a real number τ the fact (27) holds. Then f can be
written in the form (11), where µ and η are measurable bounded functions on
Ib and

lim sup
x→∞

η(x) < τ − σ.

Proof. Let m and M be real numbers such that 0 < m ≤ 1 ≤M and

m ≤ G(x) =
e−τxf(x)∫∞

x e−τtf(t)dt
≤M

for x ≥ b. Since∫ y

b
G(t)dt = −

[
log
∫ ∞

x
e−τtf(t)dt

]y

b

= log

∫∞
b e−τtf(t)dt∫∞
y e−τtf(t)dt

for y ≥ b, and so for x ≥ b

f(x) = eτxG(x)
∫ ∞

x
e−τtf(t)dt =

=
{
eτbG(x)

∫ ∞
b

e−τtf(t)dt
}{

eτ(x−b) exp
(∫ x

b

(
−G(t)

)
dt

)}
;

hence statement follows if we put

µ(x) = log
{
e(τ−σ)bG(x)

∫ ∞
b

e−τtf(t)dt
}

and η(x) = τ − σ −G(x).

We notice, using the numbers defined by (ηs), (ηi), (15) and (16) the
result of Lemmas 4 and 5 can be stated as follows:

ρ
2
(f) ≤ ρ(f) and ρ(f) ≤ ρ2(f).(29)
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Moreover, the realations (24), (28) and (29) imply the following equal-
ities:

ρ(f) = ρ
1
(f) = ρ

2
(f) and ρ(f) = ρ1(f) = ρ2(f).(30)

From this facts we have as an immediately consequence a part of the
following statement.

Theorem 4.18. Let f be a Tr(ORV ) function of lower and upper in-
dex p and q, respectively. Then

p = ρ = ρ
1

= ρ
2

and q = ρ = ρ1 = ρ2.(31)

We notice, from (30), for proof of Theorem 12, i.e., (31), we need only
show that p = ρ and q = ρ. On this sense the following statement holds.

Lemma 6. Let f be a Tr(ORV ) function of lower and upper index p
and q respectively. Then

p = ρ
1
(f) and q = ρ1(f).(32)

Proof. We shall prove the second relation in (32). By applying it to the
function 1/f one obtains the first one.

If e−τxf(x) almost decreases for x ≥ b, there exists by definition a real
number M ≥ 1 such that

e−τyf(y)
e−τxf(x)

≤M for y ≥ x ≥ b.

In further, by putting y = x+ t, this inequality becomes
f(x+ t)
f(x)

≤Meτt for x ≥ b and t ≥ 0,

and hence

r(t) = lim sup
x→∞

f(x+ t)
f(x)

≤Meτt for t ≥ 0;

and by 2) of Theorem 11 we obtain

eqt ≤M τt fot t > 0,

i.e., consequently of this, q ≤ τ . If τ > q, then, by definition (12) of the upper
index q, there exists a number d > 1 such that

log r(d)
d

< τ, i.e., r(d) < eτd.

Consequently of this, by definition of the function r, there exists x0 ≥ b
such that

f(x+ d)
f(x)

< eτd for x ≥ x0.
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On the other hand, by Theorem 8, there exist real numbers M > 0 and
x1 ≥ b such that

f(x+ s)
f(x)

≤M for x ≥ x1 and 1 ≤ s ≤ d;

then, for c = max{x0, x1}, for x ≥ c and for some n ∈ N ∪ {0} if t = s + nd
we have

f(x+ t)
f(x)

=
f(x+ s+ nd)
f(x+ nd)

f(x+ nd)
f
(
x+ (n − 1)d

) . . . f(x+ d)
f(x)

≤

≤M
(
eτd
)n = Meτnd = Meτ(t−s) ≤Meτt.

Hence, the function e−τxf(x) is almost decreasing for x ≥ c. Being
logarithmically bounded on [b, c], the same is true for b ≤ x ≤ c and, hence,
for x ≥ b. The proof is complete.

Proof of Theorem 10. Directly, from Lemmas 2, 3, 4 and 5 follows
equivalence of conditions (Ta), (Tb) and (Tc) by the facts: (Ta) implies (Tb)
and (Tc) – from Lemma 3, Lemma 4 implies that f ∈ Tr(ORV ) is a conse-
quenca of (Tb), Lemma 2 implies that (Ta) is a consequence of f ∈ Tr(ORV ),
and Lemma 5 implies that f ∈ Tr(ORV ) is a consequenca of (Tc). The proof
is complete.

Theorem 4.19. Let f be a Tr(ORV ) function of lower and upper in-
dex p and q, respectively. Then

lim
x→∞

e−σxf(x) =∞ for each σ < p,(33)

lim
x→∞

e−τxf(x) = 0 for each τ > q.(34)

Annotation. For the proof of this preceding statement we have to
introduce the following numbers:

ρ∗ = ρ∗(f) = lim inf
x→∞

log f(x)
x

and ρ∗ = ρ∗(f) = lim sup
x→∞

log f(x)
x

(35)

for the Tr(ORV ) function f , and so, we proved that

ρ∗(f) = sup {σ ∈ R : eσx � f(x) as x→∞} .(36)

In the equality (36) one can, evidently, substitute � by �, i.e.,

lim inf
x→∞

e−τxf(x) > 0

by limx→∞ e−σxf(x) =∞. Since ρ∗(f) = −ρ∗(1/f), we have

ρ∗ = ρ∗(f) = inf {τ ∈ R : f(x) � eτx as x→∞} ,(37)

where f(x) � eτx can be substituted by f(x) � eτx, i.e., lim sup
x→∞

e−τxf(x) <∞
by limx→∞ e−τxf(x) = 0. (For further facts see: Tasković [30]).
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Theorem 4.20. Let f be a Tr(ORV ) function of lower and upper in-
dex p and q, respectively. Then, if σ < p the following equivalent realtions are
true:

inf
t≥x

e−σtf(t) � e−σxf(x) on Ib,(38)

sup
b≤t≤x

e−σtf(t) � e−σxf(x) on Ib,(39)

there exists a positive nondecreasing function ψ on Ib such that(40)
f(x) � eσxψ(x) on Ib;

if τ > q the following realtions are true:

sup
t≥x

e−τtf(t) � e−τxf(x) on Ib,(41)

inf
b≤t≤x

e−τtf(t) � e−τxf(x) on Ib,(42)

there exists a positive nonincreasing function ψ on Ib such that(43)
f(x) � eτxψ(x) on Ib.

Proof. If σ < p, then the function e−σxf(x) almost increases on Ib, and
by the definition and some properties of almost monotone functions6) this is
equivalent to each of the facts (38), (39) and (40). The dual statements (41),
(42) and (43) follows in analogous way. The proof is complete.

An important remark. The proofs of Theorems 8-14 I am make by
the pattern from papers: Aljančić-Arand-elović [4], Matuszewska [22], Matu-
szewska-Orlicz [23], and Karamata [19].

5. Some subclasses of the class Tr(ORV )

From the preceding facts we have the following relations: Tr(SV ) ⊂
Tr(RV ) ⊂ Tr(ORV ). In this sense we give a number new examples of sub-
classes functions of the class Tr(ORV ).

6)A function f is almost increasing on Ic if and only if there exists an increasing function
ψ on Ic such that f(x) � ψ(x) on Ic.

If log f is locally bounded on Ic (bounded on [c, d] for each d ≥ c), then the following
facts are equivalent:

f is almost increasing on Ic.(a1)

sup
c≤t≤x

f(t) � f(x) as x→ ∞.(a2)

sup
c≤t≤x

f(t) � f(x) as x→ ∞.(a3)

In this sense dual facts holds and for almost decreasing functions. This follows in an
analogous way.
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Example 1. (Tr(ERV ) functions). A positive, finite and measurable
function f , defined on Ia for some a > 0, is said to be translational extended
regular variation at infinity (denoted this class by Tr(ERV )) if

exp(λd) ≤ lim inf
x→∞

f(x+ λ)
f(x)

≤ lim sup
x→∞

f(x+ λ)
f(x)

≤ exp(λρ)

for some d, ρ ∈ R and for every λ ≥ 0. We have clearly Tr(RV ) ⊂ Tr(ERV ) ⊂
Tr(ORV ), i.e., Tr(ERV ) is a subclass of the class of all Tr(ORV ) functions.

Annotation. We notice, an intermediary class of functions of extended
regular variation (denoted by ERV ) was found by Matuszewska - Orlicz [23].
In this sense, a positive, finite and measurable function f |Ia is said to be ERV
if

λd ≤ lim inf
x→∞

f(λx)
f(x)

≤ lim sup
x→∞

f(λx)
f(x)

≤ λρ

for some d, ρ ∈ R and for every λ ≥ 1. As well-known SV ⊂ RV ⊂ ERV ⊂
ORV . For more detail see [7].

Example 2. (Tr(Sc) functions). A positive finite and measurable func-
tion f |Ia is said to be translational Sc varying at infinity (denoted this class
by Tr(Sc)) if the limit

lim
x→∞

f(x+ ψ(x))
f(x)

= 1

for every continuous function ψ : Ia → (0,∞) tending to 0 as x → ∞. That
is Tr(Sc) ⊂ Tr(ORV ) follows from the following statement.

Lemma 7. A function f ∈ Tr(Sc) if and only if the following fact holds
that is

lim
x→∞
λ→0

f(x+ λ)
f(x)

= 1.(44)

Proof. If (44) is not true, then we can find sequences (λn) and (xn)
such that λn → 0 and xn →∞ as n→∞, and∣∣∣∣f(xn + λn)

f(xn)
− 1

∣∣∣∣ ≥ ε for n ∈ N.

If define ψ(xn) = λn for n ∈ N and elsewhere to be linear and continu-
ous, then, clearly, ψ(x) → 0 as x→∞ and∣∣∣∣∣f

(
xn + ψ(xn)

)
f(xn)

− 1

∣∣∣∣∣ =
∣∣∣∣f(xn + λn)

f(xn)
− 1

∣∣∣∣ ≥ ε

for n ∈ N. Hence f /∈ Tr(Sc). (For the second proof of this see: Tasković [30].)
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Conversely, assume that f is satisfying the condition (44). Then for
any ε > 0 there are δ0(ε) and γ(ε) such that

∣∣(f(x + λ)/f(x)
)
− 1

∣∣ < ε if
|λ| ≤ δ0(ε) and x ≥ γ(ε). If ψ(x) → 0 as x → ∞, then there is a x0 such
that |ψ(x)| ≤ δ0(ε) for x ≥ x0. Thus,

∣∣(f(x + ψ(x)
)
/f(x)

)
− 1

∣∣ < ε for
x ≥ max{x0, γ(ε)}, which means that f ∈ Tr(Sc). The proof is complete.

Annotation. A function f is a ϕ-function if f : [0,∞)→ [0,∞), f(0) =
0, f is continuous and increasing, and f(x)→∞ as x→∞.

From Matuszewska - Orlicz [23], also see and Schmidt [25], Kc is the
set of all ϕ-functions f with the property

lim
x→∞

f
(
α(x)x

)
f(x)

= 1

for every continuous function α : [0,∞) → (0,∞) tending to 1 as x → ∞.
From D. D- určić [32] follows that f ∈ Kc if and only if

lim
x→∞
λ→1

f(λx)
f(x)

= 1.

Example 3. (Tr(V D) functions). Consider arbitrary functions x and
y which are positive on the interval Ia for some a > 0 and x(t), y(t)→∞ as
t→∞. If in addition f is positive and measurable on Ia we can consider the
following fact:

lim
t→∞

(
x(t)− y(t)

)
= 0 implies lim

t→∞

f
(
x(t)

)
f
(
y(t)

) = 1.(45)

The class of all functions f which satisfying the condition (45) is denoted
by Tr(VD).

Lemma 8. For a positive and measurable function f : Ia → (0,∞) the
following facts are mutually equivalent:

(a) f ∈ Tr(V D).
(b) If (an) and (bn) are arbitrary sequences tending to ∞, then we have

that limn→∞(an − bn) = 0 implies that limn→∞
(
f(an)/f(bn)

)
= 1.

(c) It holds true

lim
x→∞
λ→0

f(x+ λ)
f(x)

= 1.

Proof. Let f ∈ Tr(V D). Taking x(t) = an and y(t) = bn for n ≤ t <

n+ 1, we have that

lim
n→∞

f(an)
f(bn)

= lim
t→∞

f
(
a[t]

)
f
(
b[t]
) = 1.
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This means that (a) implies (b). That (b) implies (c), first, take any
sequence xn > 0 tending to ∞, and any sequence λn > 0 tending to 0 as
n→∞. Second, putting an = xn + λn and bn = xn we find using (b), that

lim
n→∞

f(xn + λn)
f(xn)

= 1,

whence we get (c).
Further, by relation (c) we conclude that for every ε > 0 there exist

some γ(ε) and δ(ε) > 0 such that
∣∣(f(x+ λ)/f(x)

)
− 1
∣∣ < ε for x ≥ γ(ε) and

|λ| ≤ δ(ε).
By assumptions from (a), we have that

∣∣x(t)−y(t)∣∣ ≤ δ(ε) for t ≥ t1 and
y(t) ≥ γ(ε) for t ≥ t0. Taking t2 = max{t0, t1} we find that

∣∣(f(x(t)
)
/f
(
y(t)

)
−

1
∣∣ < ε for t ≥ t2. Thus (c) implies (a). The proof is complete.

Some further facts. In connection with the preceding class Tr(VD)
functions we have an analogous with the Theorems 6 and 9, as a middle
solution problem of representation for the classes Tr(RV ) and Tr(ORV ).

Theorem 5.21. A function f ∈ Tr(V D) if and only if there exist σ ∈
R and measurable and bounded real functions µ and η on Ib for some b ≥ a

such that

f(x) = exp
(
σx+ µ(x) + r(x) +

∫ x

b
η(t)dt

)
for x ≥ b, where µ(x)→ 0 as x→∞ and r is a uniformly continuous bounded
function on the interval Ib for some b ≥ a.

Indeed, since the class Tr(V D) is a proper subclass of the class Tr(ORV ),
by Theorem 9 we have that every function f ∈ Tr(ORV ) has the representa-
tion

f(x) = exp
(
σx+ µ(x) +

∫ x

b
η(t)dt

)
for some σ ∈ R and some measurable bounded functions µ and η on Ib for
some b ≥ a. Since f, g ∈ Tr(V D) implies that f · g ∈ Tr(V D) and since the
function.

ψ(x) = exp
(
σx+

∫ x

b
η(t)dt

)
for x ≥ b belongs to the class Tr(V D) we obtain the following fact that is
f ∈ Tr(V D) if and only if

lim
λ→0

(
lim

x→∞
(µ(x+ λ)− µ(x))

)
= 0,
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i.e., from a result of D- určić [32], the function µ(x) has a form h(x) + r(x),
where h is a measurable bounded function such that h(x) → 0 as x→∞ and
r is a bounded and uniformly continuous on Ia for some a > 0.

A general remark. In the preceding parts of this paper we presents
main facts on three new classes of functions which have important applications
in the study of asymptotic processes and ergodic theory. For further facts of
this see: Tasković [29] and [30].

6. Translational regularly varying sequences

We notice, in actual fact a weaker definition of (9) can be used, for the
assymption that this positive finite limit property obtains for all λ in a subset
of positive measure of (0,∞) implies that it obtains for all λ ∈ (0,∞).

In connection with this, i.e., with (9), since h(λ) is a positive measurable
solution of the following functional equation

h(u+ v) = h(u)h(v), u, v > 0,

it is well known that h(λ) = eσλ for some finite σ, and so we can write
f(x) = eσλA(x), where

lim
x→∞

A(x+ λ)
A(x)

= 1 for each λ ≥ 0;

such a translational regularly varying function, for which the index σ of trans-
lational regular variation is zero, from the former facts, is called translational
slowly varying (denoted this class by Tr(SV )).

In connection with the preceding facts, a sequence of positive terms
(c(n)) is said to be translational regularly varying (denoted this class sequences
by Tr(RVs)) if

lim
n→∞

c([n + λ])
c(n)

= h(λ)(46)

for all λ ≥ 0, where 0 < h(λ) <∞.
It is natural to do this and to expect properties of translational regularly

varying sequences so defined to have a theory similar to that for translational
regularly varying functions.

It is this last point which is the focus of and motivation for the present
paper. We shall show that an analogous theory can be developed from (46),
but that this development is not generally close, and sometimes far, from a
simple imitation of arguments for translational varying functions, a fact which
does not appear to have been hitherto apparent.
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On the other hand, specifically, if (c(n)) is a sequence of positive num-
bers satisfying, for some sequence of positive terms (α(n)),

lim
n→∞

c(n)
α(n)

= ξ ∈ (0,∞)

where

lim
n→∞

log
(

α(n)
α(n− 1)

)
= σ, −∞ < σ <∞,

then (c(n)) is said to be a translational regularly varying sequence of index
σ.

If (c(n)) is a translational regularly varying sequence in the above sense,
the function f defined on Ia by f(x) = c([x]), is a translational regularly
varying function. In this case, make it then possible to apply the results
about translational regularly varying functions to the theory of translational
regularly varying sequences.

We notice that without this the preceding facts, as we shall see, the
theory of translational regularly varying sequences cannot be reconstructed
along the lines of the theory of translational regularly varying functions.

According to Karamata definition in [16], a sequence of positive numbers
(c(n)) is regularly varying if, for some ρ ∈ (−1,∞),

lim
n→∞

1
nc(n)

n∑
k=1

c(k) =
1

ρ+ 1
.(47)

From this definition one obtains immediately the following representa-
tion theorem:

If (c(n)) is a sequence of positive numbers such that (47) holds, then
there exist sequences (η(n)) and (δ(n)) coverging to a finite number and zero,
respectively, such that

c(n) = nρ exp

(
η(n) +

n∑
k=1

δ(k)
k

)
for n ∈ N.

Former facts. We notice that the elements of a theory of regularly
varying sequences were already apparent in the papers of Pólya [24] and
Schmidt [25], which to some extent guided Karamata [16], [17] and [18] in
his development of the theory of regularly varying sequences and functions.
A similar, but slightly more general theory was developed almost at the same
time by Schur [28].

A unified theory of regularly varying sequences is given in the paper of
Bojanić and Seneta [10].
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As well as other properties of regularly varying functions and sketch
history, were reviewed in Bojanić - Seneta [8].

The following statements of this section are the main results on se-
quences. In this sense, a first result can be stated as follows.

Theorem 6.22. For a translational regularly varying sequence (c(n))
the limit function h(λ) has the form h(λ) = eσ[λ] for some finite σ and every
λ ≥ 0.

In connection with this statement, we can call the exponent σ of h(λ) =
eσ[λ], arising in connection with a translational regularly varying sequence
(c(n)), the index of translational regular variation of the sequence. A trans-
lational regularly varying sequence of index zero is called a translational slowly
varying sequence in denoted this class by Tr(SVs).

The following immediate consequences of the Theorem 16 are very useful
in applications:

Corollary 6.23. A sequence of positive numbers (c(n)) is a transla-
tional regularly varying sequence of index σ if and only if

lim
n→∞

c([n + λ])
c(n)

= eσ[λ] for every λ ≥ 0.

Corollary 6.24. A sequence of positive numbers (c(n)) is a transla-
tional regularly varying sequence of index σ if and only if

c(n) = eσnA(n), for n ≥ 1,

where (A(n)) is a translational slowly varying sequence.

We notice that the proof of Theorem 16 is based on the following two
lemmas. In this sense, the proof follows the same ideas as the proof of Theorem
1 in Bojanić-Seneta [10].

Lemma 9. If (c(n)) is a translational regularly varying sequence, then
we have that c(n+ 1)/c(n) → 1 as n→∞.

Proof. First write a(n) = log(c(n + 1)/c(n)). Then for λ ∈ (0, 1), as
n→∞, we obtain that

n+1∑
k=[n+λ]

a(k) = log(c(n + 2)/c([n + λ]))→ − log(h(λ)h(2));

and let

An(λ) =
n+1∑

k=[n+λ]

a(k), for λ ∈ (0, 1),
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since

An(λ) =
n+1∑
k=i

a(k) if
i

n
≤ λ ≤ i+ 1

n
,

for i = 0, 1, . . . , n− 1, it follows that

An+1(λ)−An(λ) = a(n+ 2) if
i

n
≤ λ ≤ i+ 1

n+ 1
for any i = 0, 1, . . . , n− 1, where it should be noted that

i

n+ 1
≤ i

n
<
i+ 1
n+ 1

<
i+ 1
n

.

Define the following set

En =
n−1⋃
i=0

(
i

n
,
i+ 1
n+ 1

)
⊂ (0, 1),

so that for any fixed n and λ ∈ En we have An+1(λ)−An(λ) = a(n + 2).
If suppose now that ξ is an irrational number in (0, 1), then for given

ε > 0 we can find α(ξ, ε) such that for n ≥ α(ξ, ε), we have

|An+1(ξ)−An(ξ)| < ε and |An+1(1− ξ)−An(1− ξ)| < ε.

Hence, for fixed n ≥ α(ξ, ε), there are two possibilities: First, if ξ ∈ En,
then

|a(n+ 2)| = |An+1(ξ)−An(ξ)| < ε,

and second, if ξ /∈ En, then from the definition of En it follows that

ξ ∈
n⋃

i=1

[
i

n+ 1
,
i

n

)
,

i.e., precise, for some 1 ≤ i ≤ n the following fact holds: i/(n+ 1) ≤ ξ ≤ i/n,
so that

n− i
n

< 1− ξ ≤ n+ 1− i
n+ 1

;

and since 1− ξ is irrational, it follows that 1− ξ ∈ En, whence the argument
of the first case applies with 1− ξ in place of ξ. Thus we obtain that

a(n+ 2) = log
(
c(n+ 3)
c(n+ 2)

)
→ 0 as (n→∞)

and thus the statement is proved.

Lemma 10. For a translational regularly varying sequence (c(n)) and
for fixed λ and µ the following fact holds that is

lim
n→∞

c([n+ µ+ λ])
c([n+ µ])

= h(λ).
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Proof. Consider first the case where λ ∈ (0, 1). For positive integer n,
λ+µ+n = λ+[n+µ]+(λ+n+µ)− (λ+[n+µ]), and since [x] ≤ x < [x]+1,
we obtain

[λ+ [n+ µ]] ≤ λ+ [n+ µ] ≤ λ+ µ+ n =
= λ+ [n+ µ] + (λ+ n+ µ)− (λ+ [n+ µ]) < [λ+ [n+ µ]] + 1 + 1;

hence[
n+ µ+ λ

]
=
[
[n+ µ] + λ

]
or [n+ µ+ λ] =

[
[n+ µ] + λ

]
+ 1,

and, in the first case we obtain

c
(
[n+ µ+ λ]

)
c
(
[n+ µ]

) =
c
([

[n+ µ] + λ
])

c
(
[n+ µ]

) ;

while in the second case we have
c
(
[n+ µ+ λ]

)
c
(
[n+ µ]

) =
c
([

[n+ µ] + λ
]
+ 1

)
c
([

[n+ µ] + λ
]) c

([
[n+ µ] + λ

])
c
(
[n+ µ]

) .

In either case the limit of the right-hand side is h(λ), in virtue of (46);
where in the second case we have used also Lemma 9. If λ ∈ (1,∞), then we
obtain analogous[

[n+ µ] + λ
]
≤ n+ µ+ λ ≤

[
[n+ µ] + λ

]
+ 1 + λ <

[
[n+ µ] + λ

]
+ 2 + [λ]

so that [n+ µ+ λ] can take on the values[
[n+ µ] + λ

]
,
[
[n+ µ] + λ

]
+ 1, . . . ,

[
[n+ µ] + λ

]
+ 1 + [λ]

and repeated use of Lemma 9 finitely many times gives the result in general
case. The proof is complete.

Proof of Theorem 16. If we proceed analogously to the function case,
then we may write for 0 ≤ λ, µ <∞ that is

c
(
[n+ µ+ λ]

)
c(n)

=
c
(
[n+ µ+ λ]

)
c
(
[n+ µ]

) c
(
[n+ µ]

)
c(n)

;

and thus the Theorem 16 can be now proved easily if one observes that the
preceding equality, in view of (46) and Lemma 10, implies that h(λ + µ) =
h(λ)h(µ), and that h is a positive measurable function. The proof is complete.

We notice that such results, which are also called ”imbedding” theo-
rems, make it then possible to apply the results about translational regularly
varying functions to the theory of translational regularly varying sequences.
The next result is the following extension theorem.

Theorem 6.25. If (c(n)) is a translational regularly varying sequence
of index σ then, the function f defined on [0,∞) by f(x) = c([x]), is a trans-
lational regularly varying function of index σ.
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Proof. Since (c(n)) is a translational regularly varying sequence of in-
dex σ, for each µ > 0, and fixed λ ≥ 0, by Lemma 10 and Theorem 16 we
have

lim
n→∞

c
(
[n+ µ+ λ]

)
c
(
[n+ µ]

) = eσ[λ],

and; since, for fixed λ,

gλ(x) =
c
(
[x+ λ]

)
c
(
[x]
) − eσ[λ]

is a right continuous function in x > 0, and as n → ∞, gλ(n + µ) → 0 for
each µ ≥ 0, hence gλ(x)→ 0 as x→∞ through all real values. Thus for each
λ ≥ 0 we obtain that is

lim
x→∞

c
(
[x+ λ]

)
c
(
[x]
) = eσ[λ],

so f(x) = c
(
[x]
)

is clearly a translational regularly varying function of index
σ. The proof is complete.

In connection with the preceding statement, since we may now apply
for f all the properties possessed by translational regularly varying functions,
it is easy to deduce some of the analogous properties for the sequence (c(n)).
In this sense we have the following essential statement.

Theorem 6.26. (Representation Theorem). If (c(n)) is a translational
regularly varying sequence of index σ, then there exist sequences (µ(n)) and
(δ(n)) coverging to a finite limit and zero, respectively, such that

c(n) = µ(n) exp

(
σn+

n∑
k=1

δ(k)

)
(48)

for n ∈ N. Conversely, such a representation for a sequence (c(n)) implies it
is translational regularly varying of index σ.

In connection with the preceding facts, from Theorem 18, as an imme-
diate consequence, in particular, we have that

e−ρnc(n)→∞ for every ρ < σ

and

e−τnc(n)→ 0 for every τ > σ.

Proof of Theorem 18. This proof follows from Theorem 17 and the
Representation Theorem for translational regularly varying functions.

If (c(n)) is a translational regularly varying sequence of index σ, by
Theorem 17, the function f(x) = c([x]) is a translational regularly varying
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function of index σ. It follows then that there exists a positive integer b ≥ a
such that for x ≥ b we have

f(x) = µ(x) exp
(
σx+

∫ x

b
ε(t)dt

)
,

where µ(x) is a positive and measurable function on Ib such that µ(x)→ c ∈
(0,∞) as x→∞ and ε(x) is a continuous function on Ib such that ε(x) → 0
as x→∞. Thus, for n ≥ b we have

c(n) = f(n) = µ(n) exp
(
σn+

∫ n

b
ε(t)dt

)
or

c(n) = µ(n) exp

(
σn+

n∑
k=b+1

δ(k)

)
,

where

δ(k) =
∫ k

k−1
ε(t)dt, for k ≥ b+ 1;

and, we have, as n→∞, µ(n)→ c ∈ (0,∞) and

|δ(n)| ≤
(

sup
t≥n−1

|ε(t)|
)∫ n

n−1
dt = sup

t≥n−1
|ε(t)| → 0.

Hence, finally, an obvious extension of sequences (µ(n)) and (δ(n)) for
1 ≤ n ≤ b completes the first part of the proof of Theorem 18.

On the other hand, conversely, if a sequence (c(n)) has the representa-
tion (48), then we have, for each λ ≥ 0, as n→∞,

c
(
[n+ λ]

)
c(n)

=
µ
(
[n+ λ]

)
µ(n)

exp

⎛⎝σ {[n+ λ]− n}+
[n+λ]∑
k=n

δ(k)

⎞⎠ → eσ[λ],

since [n+ λ]− n→ [λ] and
[n+λ]∑
k=n

δ(k) ≤
(

sup
k≥n
|δ(k)|

)
{[n+ λ]− n} → 0.

Theorem 6.27. A sequence (c(n)) of positive numbers is a transla-
tional regularly varying sequence of index σ if and only if there is a sequence
of positive numbers (α(n)) such that

lim
n→∞

c(n)
α(n)

= ξ ∈ (0,∞),(49)

where

log
(

α(n)
α(n − 1)

)
→ σ as n→∞.(50)
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Proof. We shall show first that conditions (49) and (50) of statement
imply the representation (48) for (c(n)), so the sufficiency part of Theorem
19 follows from Theorem 18. Let

ρ(n) = log
(

α(n)
α(n − 1)

)
for n ∈ N,(51)

where α(0) = 1. By (50) we have ρ(n)→ σ(n→∞). From (51) follows that,
for n ≥ 1, we obtain

α(n)
α(n − 1)

= exp ρ(n),

i.e.,

logα(n) = ρ(1) + · · ·+ ρ(n) =
n∑

k=1

ρ(k) =

=
n∑

k=1

(
ρ(k) − σ

)
+ σn;

and, finally,

c(n) = exp
(

log
c(n)
α(n)

+ logα(n)
)

=

= µ(n) exp

(
σn+

n∑
k=1

δ(k)

)
,

where µ(n) = c(n)/α(n) is a convergent sequence and δ(n) = ρ(n) − σ → 0
(n→∞).

Converselly, if (c(n)) is a translational regularly varying sequence of
index σ, then, from Theorem 18, we have (48). If µ(n) → ξ ∈ (0,∞) as
n→∞, let α(n) by defined by

α(n) = exp

(
σn+

n∑
k=1

δ(k)

)
for n ∈ N;

then (49) clearly holds and

log
(

α(n)
α(n − 1)

)
= log (exp {σ + δ(n)}) = σ + δ(n)→ σ

as n→∞, i.e., (50) follows. The proof is complete.

Theorem 6.28. A sequence of positive numbers (c(n)) is translational
regularly varying of index σ if and only if, as n→∞,
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(i)7) for every ρ < σ:

max
1≤k≤n

{
e−ρkc(k)

}
∼ e−ρnc(n)

and

inf
k≥n

{
e−ρkc(k)

}
∼ e−ρnc(n);

and
(ii) for every τ > σ:

min
1≤k≤n

{
e−τkc(k)

}
∼ e−τnc(n)

and

sup
k≥n

{
e−τkc(k)

}
∼ e−τnc(n).

Proof. First suppose that (c(n)) is a translational regularly varying
sequence of index σ. We have that is

lim sup
n→∞

(
e−ρnc(n)

max1≤k≤n

{
e−ρkc(k)

}) ≤ 1,

and, thus, in order to prove the first of the relations (i), it will be sufficient
to show that

lim inf
n→∞

(
e−ρnc(n)

max1≤k≤n

{
e−ρkc(k)

}) ≥ 1.

If this inequality were not true, there would exist sequences (ai) and
(bi) of positive integers such that 1 ≤ bi ≤ ai, where bi → ∞ as i → ∞ in
view of fact that e−ρnc(n)→∞ for every ρ < σ and

lim
i→∞

e−ρaic(ai)
e−ρbic(bi)

= d < 1.

Since e−ρnc(n) = exp
(
{σ−ρ}n

)
A(n) is a translational regularly varying

sequence of index σ−ρ > 0, by Theorem 19 we can find a sequence of positive
numbers (α(n)) such that

e−ρnc(n)
α(n)

→ ξ ∈ (0,∞) and log
(

α(n)
α(n− 1)

)
→ σ − ρ

as n→∞. In view of the preceding relations, the sequence (α(n)) is eventually
nondecreasing. Writing e−ρnc(n) = a(n)α(n), we have

lim
i→∞

α(ai)
α(bi)

= lim
i→∞

a(bi)
a(ai)

· e
−ρaic(ai)
e−ρbic(bi)

= d < 1,

7)an ∼ bn (n→ ∞) means an/bn → 1 (n→ ∞).
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which is impossible since α(ai) ≥ α(bi). To prove the second of the relations
(i), observe first that

lim inf
n→∞

(
e−ρnc(n)

infk≥n

{
e−ρkc(k)

}) ≥ 1.

and suppose that

lim sup
n→∞

(
e−ρnc(n)

infk≥n

{
e−ρkc(k)

}) = d > 1;

and, since e−ρnc(n) → ∞ (n → ∞) by Theorem 18, it is easy to see that
infk≥n{e−ρkc(k)} is actually attained for some k ≥ n and for each n ∈ N. From
here, the proof is analogous to the preceding proof. The proof of relations (ii)
of statement is similar and hence omitted.

Next, suppose that (c(n)) is a sequence of positive numbers satisfying
(i) and (ii) of statement. We have

c
(
[n+ λ]

)
c(n)

≥
c
(
[n+ λ]

)
eρn max1≤k≤[n+λ]{e−ρkc(k)} =

=
eρ[n+λ]

eρn

(
e−ρ[n+λ]c

(
[n+ λ]

)
max1≤k≤[n+λ]{e−ρkc(k)}

)
and, hence, by the first of the realtions (i) of statement we obtain

lim inf
n→∞

c
(
[n+ λ]

)
c(n)

≥ eρ[λ];

and, on the other hand, next

c([n+ λ])
c(n)

≤
c
(
[n+ λ]

)
eτn min1≤k≤[n+λ]{e−τkc(k)} =

=
eτ [n+λ]

eτn

(
e−τ [n+λ]c

(
[n+ λ]

)
min1≤k≤[n+λ]{e−τkc(k)}

)
and so, by the first of the realtions (ii) of statement, we obtain

lim sup
n→∞

c
(
[n+ λ]

)
c(n)

≤ eτ [λ],

i.e., since ρ < σ < τ can be chosen arbitrarily close to σ it follows that

lim
n→∞

c
(
[n+ λ]

)
c(n)

= eσ[λ]

for every λ ≥ 0. Now the proof is complete. (For this see and: Tasković [29].)
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Some applications. From the preceding statements we are now in a
position to formulate the following consequences:

(a) If (c(n)) is a translational regularly varying sequence of index σ,
then the following inequalities hold that is

lim sup
n→∞

1
e−ρnc(n)

n∑
k=1

eαkc(k) ≤ eα+ρ

1− eα+ρ

for some α+ ρ < 0 and ρ < σ; and that is

lim inf
n→∞

1
e−τnc(n)

n∑
k=1

eαkc(k) ≥ eα+τ

1− eα+τ

for some α+ τ < 0 and σ < τ .
(b) If (c(n)) is a translational regularly varying sequence of index σ,

then the following inequalities hold that is:

lim sup
n→∞

1
eαnc(n)

∞∑
k=n

eαkc(k) ≤ 1
1− eα+τ

for some α+ τ < 0 and σ < τ ; and that is

lim inf
n→∞

1
eαnc(n)

∞∑
k=n

eαkc(k) ≥ 1
1− eα+ρ

for some α+ ρ < 0 and ρ < σ.
Proofs. Assume that (c(n)) is a translational regularly varying se-

quence with index σ. Let α+ ρ < 0 and let ρ < σ. We have then
n∑

k=1

eαkc(k) =
n∑

k=1

e(α+ρ)ke−ρkc(k) ≤

≤
{

max
1≤k≤n

(
e−ρkc(k)

)} n∑
k=1

e(α+ρ)k;

and since α+ ρ < 0 and ρ < σ, we have
n∑

k=1

e(α+ρ)k = eα+ρ 1− e(α+ρ)n

1− eα+ρ
,

hence
1

e−ρnc(n)

n∑
k=1

eαkc(k) ≤
(

max1≤k≤n

(
e−ρkc(k)

)
e−ρnc(n)

)
eα+ρ 1− e(α+ρ)n

1− eα+ρ
,

and so, by the first of the relations (i) of Theorem 20, we obtain

lim sup
n→∞

1
e−ρnc(n)

n∑
k=1

eαkc(k) ≤ eα+ρ

1− eα+ρ
.
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Likewise, if α+ τ < 0 and τ > σ, then we have
n∑

k=1

eαkc(k) =
n∑

k=1

e(α+τ)ke−τkc(k) ≥

≥
{

min
1≤k≤n

(
e−τkc(k)

)} n∑
k=1

e(α+τ)k;

and since
n∑

k=1

e(α+τ)k = eα+τ 1− e(α+τ)n

1− eα+τ
,

hence

1
e−τnc(n)

n∑
k=1

eαkc(k) ≥
(

min1≤k≤n

(
e−τkc(k)

)
e−τnc(n)

)
eα+τ 1− e(α+τ)n

1− eα+τ

and, so by the first of the relations (ii) of Theorem 20 we obtain

lim inf
n→∞

1
e−τnc(n)

n∑
k=1

eαkc(k) ≥ eα+τ

1− eα+τ
,

i.e., (a) holds. On the other hand, if (c(n)) is a translational regularly varying
sequence with index σ and if α+ τ < 0 and σ < τ , then we have

∞∑
k=n

eαkc(k) =
∞∑

k=n

e(α+τ)ke−τkc(k) ≤

≤
(

sup
k≥n

{
e−τkc(k)

}) ∞∑
k=n

e(α+τ)k;

and since α+ τ < 0 and τ > σ, we have
∞∑

k=n

e(α+τ)k = e(α+τ)n
∞∑

k=0

e(α+τ)k,

hence

1
eαnc(n)

∞∑
k=n

eαkc(k) ≤
(

supk≥n

(
e−τkc(k)

)
e−τnc(n)

) ∞∑
k=0

e(α+τ)k

and so, by the second of the relations (ii) of Theorem 20, we obtain

lim sup
n→∞

1
eαnc(n)

∞∑
k=n

eαkc(k) ≤ 1
1− eα+τ

.
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Likewise, if α+ ρ < 0 and ρ < σ, then we have that is
∞∑

k=n

eαkc(k) =
∞∑

k=n

e(α+ρ)ke−ρkc(k) ≥

≥
{

inf
k≥n

(
e−ρkc(k)

)} ∞∑
k=n

e(α+ρ)k;

and since
∞∑

k=n

e(α+ρ)k = e(α+ρ)n
∞∑

k=0

e(α+ρ)k,

hence

1
eαnc(n)

∞∑
k=n

eαkc(k) ≥
(

infk≥n

{
e−ρkc(k)

}
e−ρnc(n)

) ∞∑
k=0

e(α+ρ)k

and so, by the second of the relations (i) of Theorem 20, we obtain

lim inf
n→∞

1
eαnc(n)

∞∑
k=n

eαkc(k) ≥ 1
1− eα+ρ

;

which means that the proof, of (a) and (b) of the preceding statements, is
complete.

7. Translational O-regularly varying sequences

In connection with the preceding facts, a sequence of positive terms
(c(n)) is said to be translational O-regularly varying (denoted this class
by Tr(ORVs)) if

lim sup
n→∞

c
(
[n + λ]

)
c(n)

= r(λ)(52)

for all λ ≥ 0, where 0 < r(λ) <∞.
It is natural to do this and to expect properties of translational O-

regularly varying sequences so defined to have a theory similar to that for
translational O-regularly varying functions.

If (c(n)) is a translational O-regularly varying sequence in the above
sense, the function f defined on Ia by f(x) = c([x]), is a translational O-
regularly varying function. Make it then possible to apply the results about
translational O-regularly varying functions to the theory of translational O-
regularly varying sequences. In this sense we have the following extension
theorem.
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Theorem 7.29. If (c(n)) is a translational O-regularly varying sequence
then the function f , defined on [0,+∞) by f(x) = c([x]), is a translational
O-regularly varying function.

Proof for this statement is analogous to the proof of Theorem 17.
In connection with this statement, since we may now apply for f all the

properties possessed by translational O-regularly varying functions, it is easy
to deduce some of the analogous properties for the sequence (c(n)). Thus we
have the following essential fact.

Theorem 7.30. (Representation Theorem). If (c(n)) is a translational
O-regularly varying sequence, then there exist σ ∈ R and bounded sequences
(µ(n)) and (δ(n)) such that

c(n) = exp

(
σn+ µ(n) +

n∑
k=1

δ(k)

)
(53)

for n ∈ N. Conversely, such a representation for a sequence (c(n)) implies it
is translational O-regularly varying.

The proof of this statement follows from Theorem 21 and the Repre-
sentation Theorem for translational O-regularly varying functions.

8. Some subclasses of the class Tr(ORVs)

From the preceding facts we have the following relations: Tr(SVs) ⊂
Tr(RVs) ⊂ Tr(ORVs). In this sense we give a number new examples of sub-
classes sequences of the class Tr(ORVs).

Example 4. (Tr(ERVs) sequences). A sequence of positive terms (c(n))
is said to be translational extended regular variation (denoted this class by
Tr(ERVs)) if

exp(λd) ≤ lim inf
n→∞

c
(
[n+ λ]

)
c(n)

≤ lim sup
n→∞

c
(
[n+ λ]

)
c(n)

≤ exp(λρ)

for some d, ρ ∈ R and for every λ ≥ 0. We have clearly Tr(RVs) ⊂ Tr(ERVs) ⊂
Tr(ORVs), i.e., Tr(ERVs) is a subclass of the class of all Tr(ORVs) se-
quences.

Remark. We notice, an intermediary class of sequences of extended re-
gular variation (denoted by ERVs) was found by Matuszewska-Orlicz [23]. In
this sense, a sequence of positive terms (c(n)) is said to be ERVs if

λd ≤ lim inf
n→∞

c
(
[λn]

)
c(n)

≤ lim sup
n→∞

c
(
[λn]

)
c(n)

≤ λρ
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for some d, ρ ∈ R and for every λ ≥ 1. As well-known SVs ⊂ RVs ⊂ ERVs ⊂
ORVs.

Example 5. (Tr(Sc∗) sequences). A sequence of positive terms (c(n))
is said to be translational Sc∗ varying (denoted this class by Tr(Sc∗)) if

lim
n→∞

c
(
[n+ ψ(n)]

)
c(n)

= 1(54)

for every continuous function ψ : Ia → (0,∞) tending to zero as x → ∞.
Thus we have Tr(Sc∗) ⊂ Tr(ORVs).

On the other hand, in special case, a sequence of positive terms (c(n)) is
said to be translational ∗-regularly varying (denoted this class by Tr(∗RVs))
if

lim
λ→0

(
lim

n→∞

c
(
[n+ λ]

)
c(n)

)
= 1;(55)

and, also, in this sense a sequence of positive terms (c(n)) is said to be tran-
slational ∗O-regularly varying (denoted this class by Tr(∗ORVs)) if

lim
λ→0

(
lim sup

n→∞

c
(
[n+ λ]

)
c(n)

)
= 1.(56)

From the preceding facts we have the following essential statement
which is connected with the former Theorem 15.

Theorem 8.31. (Representation Theorem). If (c(n)) is a translational
∗O-regularly varying sequence, then there exist σ ∈ R and bounded sequences
(µ(n)), (r(n)) and (δ(n)) such that

c(n) = exp

(
σn+ µ(n) + r(n) +

n∑
k=1

δ(k)

)
(57)

for n ∈ N, where r is a uniformly continuous function on the interval Is for
some s ∈ N. Conversely, such a representation for a sequence (c(n)) implies
it is translational ∗O-regularly varying.

The proof (in main line) of this statement is analogous to the proof of
Theorems 15 and 18.

9. Some open problems and an illustration

We shall say that a positive, finite and measurable function f , defined
on Ia for some a > 0, is a translational homothetic function at infinity
(denoted this class by TH) if the limit

lim
x→∞

f(λx+ τ)
f(x)

= k(λ, τ)(58)
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is positive and finite for all λ > 0 and τ ≥ 0. Thus, from (58), for λ = 1 we
obtain the class Tr(RV ) and for τ = 0 we have the class RV in Karamata’s
sense.

Open problem 1. To invent representation of the class TH of the all
translational homothetic functions!? Also, to invent and some characterizati-
ons of the class functions TH!?

We notice, from (58) we obtain the following functional equation in the
form

k(λ, τ) = k(1, τ)k(λ, 0)

for all λ > 0 and all τ ≥ 0. This is an essential fact for further solution of
open problem 1.

In connection with the preceding, parallel to the TH functions we can
consider OTH functions.

In this sense, a positive, finite and measurable function f on Ia for some
a > 0 is said to be O-translational homothetic at infinity (denoted this class
by OTH) if

lim sup
x→∞

f(λx+ τ)
f(x)

= r(λ, τ)(59)

is finite for all λ > 0 and τ ≥ 0. Specially, from (59), for λ = 1 we have
defined the class Tr(ORV ) and for τ = 0 we, from the preceding equality,
obtain defined the class ORV in the Karamata’s and Avakumović’s sense.

Open problem 2. To invent representation of the class OTH of the
all O-translational homothetic functions!? In this sense, to invent and some
characterizations of the class functions OTH!?

In connection with this, we notice that, from
f(λx+ τ)
f(x)

=
f(λx+ τ)
f(λx)

f(λx)
f(x)

there follows, as x→∞,

r(λ, τ) ≤ r(1, τ)r(λ, 0)

for all λ > 0 and all τ ≥ 0. This is an essential fact for further solution of
open problem 2.

As a speciall class functions we defined the following subclass of the class
OTH functions. In this sense, a positive finite and measurable function f |Ia
for some a > 0 is said to be translational Sc homothetic at infinity (denoted
this class by THSc) if the limit

lim
x→∞

f
(
µ(x)x+ ψ(x)

)
f(x)

= 1(60)
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for all continuos functions µ,ψ : Ia → (0,∞) where µ(x) → 1 and ψ(x) → 0
as x→∞.

Thus, from (60), for µ(x) ≡ 1 we obtain the class Tr(Sc) functions (see
example 2). If ψ(x) ≡ 0, then we have the class Kc functions from Schmidt
[25] and Matuszewska - Orlicz [23].

Parallel to the THSc functions we can consider OTH∗ functions and
OHT∗ functions. Namely, the class TH∗ functions (or HT∗ functions) it is
the class of all functions f |Ia for some a > 0 which satisfying the following
equality

lim
τ→0
λ→1

(
lim

x→∞
f(λx+ τ)
f(x)

)
= 1 or lim

λ→1
τ→0

(
lim

x→∞
f(λx+ τ)
f(x)

)
= 1;

and the class OTH∗ functions (or OHT∗ functions) it is the class of all fun-
ctions f |Ia for some a > 0 which satisfying the following equality

lim
τ→0
λ→1

(
lim sup

x→∞

f(λx+ τ)
f(x)

)
= 1 or lim

λ→1
τ→0

(
lim sup

x→∞

f(λx+ τ)
f(x)

)
= 1.

Open problem 3. To invent representation of the class TH∗ functi-
ons (or HT∗ functions)! Also, to invent represantation of the class OTH∗
functions (or OHT∗ functions)!?

In the context with the preceding facts of this paper the following classes
of functions are of interest for further considered. Namely, it are the classes
of all functions f |Ia for some a > 0 which satisfying the following equalities

lim
λ→1

(
lim

x→∞
f(λx+ τ)
f(x)

)
= 1 or lim

λ→1

(
lim sup

x→∞

f(λx+ τ)
f(x)

)
= 1

for every τ ≥ 0, and, on the other hand, which satisfying the following equal-
ities

lim
τ→0

(
lim

x→∞
f(λx+ τ)
f(x)

)
= 1 or lim

τ→0

(
lim sup

x→∞

f(λx+ τ)
f(x)

)
= 1

for every λ > 0. Does some of this classes functions equally of the some of the
classes functions introduced in this paper!?

In connection with this, the following classes of sequences are of interest
for further considered, i.e., it are the classes of all sequences of positive terms
(c(n)) which satisfying

lim
λ→1

(
lim

n→∞
c([λn + τ ])

c(n)

)
= 1 or lim

λ→1

(
lim sup

n→∞

c([λn + τ ])
c(n)

)
= 1

for every τ ≥ 0, and, on the other hand, which satisfying the following equal-
ities

lim
τ→0

(
lim

n→∞
c([λn + τ ])

c(n)

)
= 1 or lim

τ→0

(
lim sup

n→∞

c([λn + τ ])
c(n)

)
= 1
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for very λ > 0. Does some of this classes sequences equally of the some of the
classes sequences introduced in this paper?!

In connection with the preceding facts, a sequence of positive terms
(c(n)) is said to be translational homothetic (denoted this class by THs) if

lim
n→∞

c
(
[λn+ τ ]

)
c(n)

= h(λ, τ)

for all λ > 0 and τ ≥ 0, where 0 < h(λ, τ) <∞. On the other hand, a sequence
of positive terms (c(n)) is said to be O-translational homothetic (denoted this
class by OTHs) if

lim sup
n→∞

c
(
[λn+ τ ]

)
c(n)

= r(λ, τ)

for all λ > 0 and τ ≥ 0, where 0 < r(λ, τ) <∞.
It is natural to do this and to expect properties of OTHs (or THs)

sequences so defined to have a theory similar to that for OTH (or TH) fun-
ctions.

Open problem 4. To invent representation of the class THs of the
all translational homothetic sequences!? Also, to invent representation of the
class OTHs of the all O-translational homothetic sequences!?

Example 6. (THSc∗ sequences). A sequence of positive terms (c(n)) is
said to be translational Sc∗ homothetic (denoted this class by THSc∗) if

lim
n→∞

c
(
[µ(n)n+ ψ(n)]

)
c(n)

= 1

for all continuous functions µ,ψ : Ia → (0,∞), where µ(x)→ 1 and ψ(x)→ 0
as x→∞.

On the other hand, in special cases, a sequence of positive terms (c(n)) is
said to be ∗-translational homothetic (or ∗-homothetic translational) denoted
this class by ∗THs (or ∗HTs) if

lim
τ→0
λ→1

(
lim

n→∞
c([λn + τ ])

c(n)

)
= 1 or lim

λ→1
τ→0

(
lim

n→∞

c
(
[λn+ τ ]

)
c(n)

)
= 1;

and, also, a sequence of positive terms (c(n)) is said to be ∗O-translational
homothetic (or ∗O-homothetic translational) denoted this class by ∗OTHs (or
∗OHTs) if

lim
τ→0
λ→1

(
lim sup

n→∞

c([λn + τ ])
c(n)

)
= 1 or lim

λ→1
τ→0

(
lim sup

n→∞

c
(
[λn+ τ ]

)
c(n)

)
= 1.

Open problem 5. To invent representation of the class THSc∗ se-
quences!? Also, to invent representations of the classes. ∗THs, ∗HTs, ∗OTHs
and ∗OHTs sequences!?
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An illustration and application. We notice that Tauberian state-
ments are concerned with the deduction of the asymptotic behaviour of func-
tions from the asymptotic behaviour of their transforms. In this sense, a typ-
ical result of the Tauberian nature can be stated as follows.

Let G(x), defined and positive on Ia for some a > 0, be given by

G(x) =
∫ x

b
k(t)dt for b ≥ a,

where t �→ k(t) is a monotone function. Then for σ ≥ 0 we have that

G(x) = eσxA(x) implies
k(x)
G(x)

→ σ (as x→∞),

where A(x) is an arbitrary translational slowly varying function. (For proof
of this statement see: Tasković [29].)
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[4] S. Aljančić, and D. Arand-elović: O-regularly varying functions, Publ. Inst.
Math. (Beograd), 22 (1977), 5-22.
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